Boiler/Cooling Water Processes and Parameters

Steam Generation Flow Diagram

Cooling Water Flow Diagram

- Feedwater
- Internal Boiler Water
- Condensate
- Blowdown
- Cooling Water
- Process Water

Feedwater

- Objectives of boiler feedwater treatment:
 - Prevent introduction of contaminants into boiler
 - Control addition of conditioning chemicals
- Control of feedwater:
 - May eliminate scaling, corrosion, carryover, embrittlement
 - May reduce operating costs

Feedwater

- As boiler pressure increases, higher quality feedwater is necessary
- Feedwater sources:
 - Varies from all makeup water to all condensate water – and everywhere in between

Feedwater

- Typical treatment of feedwater:
 - Low/Med pressure boilers
 - Zeolite softeners to reduce hardness hardness used to determine when regeneration required
 - Higher pressure boilers
 - Demineralizers monitor silica breakthrough to determine need for regeneration

- Feedwater
- Internal Boiler Water
- Condensate
- Blowdown
- Cooling Water
- Process Water

- Direct treatment of boiler water:
 - Prevents scale formation
 - Provides pH control
 - Prevents corrosion

- Scale prevention:
 - Calcium and magnesium which cause scale are controlled by:
 - Phosphate
 - pH
 - Chelant addition
 - Alkalinity

- Corrosion prevention is affected by:
 - Alkalinity
 - pH
 - Dissolved oxygen (oxygen scavengers)
 - Ammonia/amines

- High pressure boilers:
 - Maintain low silica level to prevent carryover into the steam and deposition on turbine blades

- Feedwater
- Internal Boiler Water
- Condensate
- Blowdown
- Cooling Water
- Process Water

Condensate

- <u>Condensate</u> high purity water, commonly returned to the boiler in lieu of treated makeup water
- Amount and nature of contaminants in condensate may reveal carryover and corrosion problems and suggest treatment.

Condensate

- Common condensate contaminants:
 - Leaking in of cooling water from turbine condenser
 - Dissolved gasses, oils, ions, suspended metal
 - Condensate polishers used to reduce contaminants

Condensate

- Common condensate contaminants:
 - Leakage in from heat exchangers and condensers
 - Hardness, conductivity, turbidity
 - Corrosion problems
 - Iron, copper, dissolved oxygen
 - Carryover or condenser leakage
 - Sodium, silica

- Feedwater
- Internal Boiler Water
- Condensate
- Blowdown
- Cooling Water
- Process Water

Blowdown

- Removes precipitated sludge and dissolved solids from boiler water
 - BUT results in loss of heated water and treatment chemicals
- Control blowdown to <u>maintain safe solids</u> <u>levels</u> while <u>minimizing chemical loss</u>

Blowdown

- Typical monitoring parameters
 - Solids (to control blowdown)
 - Silica
 - Hydrazine, oxygen scavengers
 - Phosphate
 - pH
 - Conductivity

- Feedwater
- Internal Boiler Water
- Condensate
- Blowdown
- Cooling Water
- Process Water

- Used in condensing steam, in water and air chillers, for process cooling
- Two types
 - Once-through
 - Recirculating

- Once-through systems
 - Require chlorination to prevent biological fouling of heat exchangers
- Recirculating systems
 - Require more treatment because of solids buildup due to evaporation
 - Need to prevent scale formation

- Chemical additives may be added to prevent scale due to hardness
 - Organic feed
 - pH control
 - Chelant addition
 - Phosphate, phosphonate

- Parameters that affect corrosion
 - Dissolved oxygen
 - Carbon dioxide
- Typically controlled with:
 - Corrosion inhibitors chromates, polyphosphates, molybdates, zinc, pH control, alkalinity, chlorine

• In recirculating systems, turbidity is also monitored to control the filtration process.

- Feedwater
- Internal Boiler Water
- Condensate
- Blowdown
- Cooling Water
- Process Water

Process Water

- The water used for operations including metal plating, metal working, manufacturing activities
- Typically water is softened, pH adjusted, treated for corrosion control and slime inhibition.
 - Free of turbidity, color, iron, manganese

Process Water

- Typical industrial needs:
 - Wash/Rinse Water Free of hardness
 - Beverage Water Sterile, clear, taste/odor free
 - Brewing Water Low hardness, alkalinity
 - Paper Processes Low color, iron, manganese
 - Chlor-alkali Manufacturing Monitor calcium in brine to prevent membrane fouling

Instruments we will Cover

- Series 5000 Silica Analyzer
- CL17 Chlorine Analyzer
- Surface Scatter 6 HR Turbidimeter
- 1720D LR Turbidimeter
- GLI pH/Conductivity

Boiler/Cooling Water Processes and Parameters

